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Abstract: A general technique is introduced for deriving Bochner type formulae on a compact riemannian
manifold, relating its curvature tensor with the intrinsic torsion of a compatible (orthogonal) G-structure.
The technique is illustrated for the groups G = Up, SUp, G2 and Spin,, with various applications of the
derived formulae in these cases.
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1. Introduction

Given an n-dimensional smooth manifold M and asubgroup G c GLj(RR), a G-structure on
M consists of areduction of its structure group to G. For example, for G = Oy, (the orthogonal
group), this amounts to giving a riemannian metric on M. If we further reduce to a subgroup
G c Oy, wethen say that we have an orthogonal G-structure (a structure which is compatible
with the riemannian metric). For example, for G = U,, C Oy, (the unitary group), thisamounts
to an almost-hermitian structure (an hermitian inner product at each tangent space).

An important invariant of a G-structure, playing a key role in Cartan’s “method of equiva-
lence” (classification of G-structures), isitsintrinsic torsion tensor. It is afirst order invariant
measuring “flatness’ (local-integrability) of the structure and its vanishing is equivalent to the
existence of atorsionless G-connection on TM. See for example [3] for further information.

Inthisarticlewestudy ageneral schemefor obtaining acurvature obstruction to the existence
of orthogona G-structures on compact riemannian manifolds. This obstruction comes in the
form of anintegral formularelating the G-irreducible components of theintrinsic torsion tensor
of the G-structurewith G-invariants of the curvaturetensor of the associated riemannian metric.
We illustrate this technique for the groups G = Un(n > 2), SUx(n > 3), G2 and Spin;, (on
manifolds of dimensions 2n, 2n, 7 and 8 resp.; SU, “belongs’ to the Sp,, series).

For the first two groups (U, and SU,) our technique recaptures and extends several known
results about almost-hermitian structures [7, 10, 18]. For the other two groups (G, and Spin;)
the results are apparently new.
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We have al so applied the method to the groups Sp, Sp; and Spy, but the cal culations are more
complicated and we |eave these cases for aforthcoming article.
Here are some typical applications of the formulae derived in this paper:

— Let (M, g) be a compact, conformally flat manifold with a compatible (orthogonal)
almost-complex structure J, let w = g(J-, -) be the corresponding “Kahler form” and denote
by s the scalar curvature. Then
(@) If Jisintegrable, then f,, s > 0, with equality if and only if d*w = 0.

(b) If w issymplectic (dw = 0) then f,, s < 0, with equality if and only if J isintegrable (i.e.
the structure is Kahler).
Moreover, in dimension 4 theresult remainstruefor anti-self-dual manifol ds (now the vanishing
of the total scalar curvature is equivalent, in both cases, to the structure being Kahler).
See Proposition 2 (Section 3.6 below). Part (a) was proved in [10].

— Let M = I'\G/K be a compact locally symmetric space with an orthogonal almost-
complex structure J. Suppose that M is of non-compact type and that J isintegrable, or that
M is of compact type and the structure is symplectic. Then, in either case, the structureisin
fact Kahler and descends from one of the 2 G-invariant Kahler structureson G/K , where G
isa product of k simple groups.

See Proposition 4 (Section 3.6 below). Again, this extends results of [10] and [15].

— Let (M, g) be a compact riemannian manifold of dimension > 6 with a compatible
complex structure. Let i« be the curvature of the Levi-Civita connection on the canonical
bundle of M and s* the x-scalar curvature. Then

/nvmﬁsza&wr—ﬁy
M M

In particular, such a manifold is Kahler if and only if ['s* = 2 [(«, ).
See Corollary 1 (Section 4.8 below). Although we have not found an explicit reference to
thisresult in the literature, it might follow from resultsin [19].
— Let M be a compact manifold of dimension 7 with a Go-structure. Then its intrinsic
torsion decomposesinto four G,-irreducible components, T = t1 + 17 + t14 + 127 (indexed by
the dimension of the irreducible subspace they belong to), satisfying

2
‘/QMV+WWV—WMF—MMF:§/&
M

where s is the scalar curvature. Thus, for example, a compact riemannian manifold with a
calibrated G,-structure (d¢ = 0, where ¢ isthe “fundamental” 3-form, or equivalently, t; =
17 = 17 = 0) has non-positive total scalar curvature.

See Corollary 3 (Section 5.5 below).

The rest of the article is organized as follows. The next section describes the technique we
use, then each section treatsin turn one of the four groups G = U,,, SU,,, G, and Spin,, with a
few applications of the formulae obtained in each case.
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2. Thetechnique

Let G c O, bethe stahilizer subgroup of a p-form¢ € AP(V¥)onV =R (p=2,m, 3,4
for G = Up, SUm(n = 2m), G, Spin, resp.). Defineamap A2®@ AP — AP, a®¢ > a - ¢,
given by

OANO)-p=0 A[iNt(d @P)] — O AINtO' ® )], 6,0 € AL, ¢ e AP,

whereint : A'® AP — AP~Lis“interior product” (contraction). Considering A2 asthe Lie
algebra o, of Oy, thismap isjust the infinitesimal pull-back action of o, on AP; thus, the Lie
algebrag of G isthekernel of -¢ : @ > « - ¢. Noteasothat fora, f € A2, a-f = —B - «,
reflecting the fact that - corresponds to the Lie bracket under the identification of A2 with oy,.

Now let M be an n-dimensional manifold with a G-structure and denote also by ¢ the
associated p-formon M. Theintrinsic torsion of such a G-structure can be identified with the
covariant derivative Vg € A ® AP. Infact,

Lemma 1. V¢ liesinthe sub-bundle W = A' ® (g* - ¢) C A ® AP. In particular, W =
At ®gt.

Thisiswell-known. See for example [17].

Remark. We will use repeatedly the natural correspondence between G-representations and
their associated bundles on a manifold with a G-structure. Thus, V = R" corresponds to the
tangent bundle, V* to the cotangent bundle, AP(V*) to APM (so we can abbreviate safely
both by AP), an invariant subspace of a G-representation corresponds to a sub-bundle, afixed
element corresponds to a section of the associated bundle, etc.

Next, we decompose orthogonally the intrinsic torsion space W = A ® (g* - ¢), and con-
sequently V¢, into G-irreducible components. These components carry interesting geometric
information about the G-structure. For example, for G = U, (almost-hermitian structure), V¢
has 4 irreducible components, the sum of certain two of them measuring theintegrability of the
associated almost-complex structure (the Nijenhuis tensor), the sum of certain three of them
representing the local triviality of the corresponding almost-symplectic structure (the exterior
derivative of the Kahler form), etc. See [13] for a complete description of the “16 types of
U, -structures’.

Now we apply to ¢ the following integral formula, holding for any p-form on a compact
Riemannian manifold (this follows, for example, from formulae WF | and WF 11 of [20, pp.
305-306)):

/M||d¢||2+||d*¢||2— p! ||V¢||2=/M<?é¢,¢>. 1)

Here Risthe endomorphism on p-formsinduced by the riemann curvaturetensor R € A2® A2
by applying (twice) the action of AZ on A P; thus, in components, with respect to alocal frame
of 1-forms {6},

Rp =Y Rj [t A0) - ¢].

i<]j
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Remark. We use the convention for the curvature tensor R = 3 _; Rj ® (6 A 6)) with
Rj = [Va. Vel — Vie.¢ (an anti-symmetric endomorphism interpreted as a 2-form), where
{e}isaframe dual to the6;.

Note that if V¢ vanishes (a “torsion-free” structure, or G-holonomy) onehas R € g ® g,
hence Rp = 0.

We will also make use of a“twisted” version of this formula (in the U,, case) which looks
exactly the same except that ¢ is a p-form on M with values in some vector bundle E with
connection, whereall objects (V, d, R, ...) aresubstituted by their twisted version [ 20, p. 430].

Next, d¢ and d*¢ can be expressed in terms of V¢, d¢ = dt(Ve) and d*¢p = —int(Ve),
wherealt: A'® AP — AP+lisalternation (extrior product). These are G-equivariant opera-
tions, so on theleft hand side of formula (1) we obtain some quadratic forminthe G-irreducible
componentsof V¢. Ontheright hand side, theintegrand isa G-invariant of the curvaturetensor,
so can be expressed in terms of the standard invariants, like the scalar curvature.

In executing the above plan for a given G, we make use of some simple techniques of
representation theory, summarized in the following two lemmas.

Lemma2. Supposethat theintrinsic torsion space W, asa G-representation, is multiplicity-
free, i.e., does not contain G-isomorphic irreducible subspaces (this occurs for all G except
SUp, in this article) and let W = Wy, & W, @ - - - be the (unique) decomposition of W into
mutually orthogonal, G-irreducible subspaces. Then there exist non-negative constants a;, by
such that for any w; € W, [ldt(wi)||? = & |lwi[|? and |lint(w;)||?> = b |w;||%. Hence, if we
decompose V¢ into itsirreducible components, V¢ = Y, (V¢)i, then

Idel? =) all(Ve)l? and [d¢|? =) bill(Ve)i|2

Thisis essentially Schur’s Lemma.
For the next lemma, recall that on a riemannian manifold, the curvature operator R is just
the interpretation of the curvature tensor R as an endomorphism on 2-forms,

R((X):—Z(Rij,a)ei/\ej, (XEAZ,

i<j
(withthesign convention so asto makesurethat R isapositiveoperator for theround sphere. . . ).

Lemma 3. Assume that the G-representation g~ C A? is multiplicity-free (this occurs for
all four G studied in this article) and let g- = Vi @ V> @ - - - be the (unique) decomposition
into G-irreducible mutually orthogonal subspaces. Let ¢j > 0 be the homothety factors of
¢ : V; — W and denote by tr(R, V;) the trace of the “jj-block of R”, i.e. the trace of
the endomorphism given by the restriction to V; of the curvature operator R, followed by
orthogonal projection onto V;. Then the integrand on the right-hand side of formula (1) is
given by

(Rp.p) = D jtr(R, V)).
,-
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Proof. Thedecomposition A% = Vo@®Vi® Vo .. ., Vo = g, inducesa“block” decomposition
of the curvature tensor, R = Zi’j rij, rij € Vi ® Vj. Weclaimthat all but ther ;; terms, j > 1,
are in the kernel of the map R— (Rp, ¢). Indeed, if R = a« ® B, witheitherax or 8 € g,
then (Rp,¢) = (a@ - (B -¢).¢) = —(B-d,a - ¢) = 0, sincethemap a- : AP — AP
is skew-symmetric (being the derivative of an isometric On-action), and g is the kernel of
¢ 1 A% — AP.Similaly, if R = ¢ ® g witha € Vi, B € V;, withi and j distinct and
> 1, then again (ﬁq&, ¢)=—(B-¢,a-¢) =0, sinceV, - ¢ and V; - ¢, being irreducible
and non-isomorphic, are orthogonal subspaces of AP Findly, if R=o ® g witha, 8 € V;,
j = 1,then(Rp,p) = —(B-¢,a-¢) = —Cj(B,a) =cjtr(R, Vj). O

In the next four sectionsweillustrate the technique explained above for the groups G = Uy,
SU;, G, and Spin,: decomposition of W and g+, calculation of the constants &;, by and the
curvature invariants ¢; tr(R, V;), thus computing formula (1). The SU,, caseis somewhat of an
exception because Lemma 2 does not apply to it.

3. Uy

U, isthe stabilizer in Oy, of the“Kahler form” w = (J-, ) € AL, where J isthe standard
almost-complex structure on C" = R?" (scalar multiplication by i). In terms of aunitary basis
2, ...,Zy for A0 w =i >iZj A Zj. A manifold with a Un-structure is often called an
almost-hermitian manifold.

3.1. The decomposition of Vw

This was done in [13] and will be reviewed here briefly. In the decomposition A2 ® C =
Ao A0 A%2 wehaveu, ® C = Al and u}t ® C = A%20 @ A%2) so that ui is
irreducible. Note that w is the 2-form corresponding to J under the standard identification of
anti-symmetric endomorphisms with 2-forms, hence for any (p, q)-form « we have

w-a=1i(0—p)a, a e APA, 2
In particular, A%° and A%2 areinvariant under -, hence also ut, thereal part of A20 @ A%2.
We thus get

WRC=A"® (- 0) ®C = (A& A ® (A*° @ A%?)

= (A" ® A% @ AM2 + conj.
Now,
AR A0 fconj. = Wi dWo) ® C, A2+ conj. = (Ws & Wa) ® C,

where:
W, isthereal part of A39;
W, isthered part of theimage of (A*° ® A% @ AL0) under the Young symmetrizer

(1-(23)(1+ (12));
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W; is the real part of the “primitive” part of A2 (kernel of the contraction in the first and
second entries);
W4 = Al N .

Note that forn = 1. W = 0; forn = 22 W; = W3 = 0 but W, and W, are non-zero
and non-isomorphic, hence orthogonal; and that for n > 3 all four summands are non-zero and
non-isomorphic, hence mutually orthogonal .

Denote by Vo = (Vw)1 + (Vw)2 + (Vw)s + (Vw)4 the decomposition of Vw, where
(Vw)i € W. In [13] one can get more information about the geometric meaning of the 4
components (Vw); € W and the vanishing of certain subgroups of the 4 components. We list
here some of the better known possibilities:

Vanishing . .
components of Ve Name Geometric meaning
al Kahler local holonomy C U,
12 Hermitian Integrability of thea most-
complex structure
1,34 Almost-Kahler or symplectic do=0
2,34 Nearly Kahler Vo = dw
4 Cosymplectic or balanced d*w =0

Table 1. Types of Up-structures

3.2. The left-hand side of formula (1)

The W, are mutually distinct (as U,-representations), hence, according to Lemma 2, there
are constants g; such that

Idel|® = ldt(Ve) | =Y lldt(Ve)i > =Y a (Vo) |
i i
where g is the homothety factor of at : W, — A3, i.e. |at(w)||? = a|wi|? for every
w; € Wi, Similarly,
Id*wl® = ) llint(Ve); |2 = 3 bill(Vo)l®
| |
where the b; are the homothety factors of int : W, — AL

The next table summarizes the result of the computation of the homothety factors a;, by and
the lements w; € W, ® C we used for computing them.

Summand | wi e W®C | Jlwill® | latw))? | llintw)l®[a | b
W, LA AN 2 1 0 6 0
W, - - 0 0 0 0
W; 721 ® (Zo A Z3) 3 1 0 2 0
W, Y152/ ®(ZAz) | 3(n—1)| n-1 (n—172 [ 2|2(n=1)

Table 2. Calculation of the homothety factorsa; and by for Uy,
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Remarks. (i) To explain the zerosin the table, note that int : W — A, but At isirreducible
and non-isomorphic to Wy, W, or W3, hence int(Wy) = int(W,) = int(W3) = 0. Similarly,
A3 does not contain a subspace isomorphic to W», hence alt(W,) = 0.

(ii) For the remaining entries, we pick elements w; in W, ® C,i = 1, 3,4, and compute
at(wi) andint(w; ) and their norms. We use throughout aunitary basiszs, . . ., z, for AY°. Thus
for example, we take wy = 71 A 2o A 3. Then alt(wy) = wq, hence |w|? = %3 (as atensor),
|at(wy)]|? = 1 (asa3-form) and so a; = 6.

It follows from this calcul ation that

[dw||? = 6]|(Vw)1]I> + 2 (V)3ll? + 2[[(Vw)4l12,
[d*w||? = 2(n — 1) [|(Vw)4l1°.

3.3. Theright-hand side of formula (1) (the curvature term)

According to Lemma 3, since u;- isirreducible, (R, o) = ctr(R, ut), wherec > Oisthe
homothety factor of -w : ut — ul. Sinceforz; Az e ut ® C, (1 A 22) - 0 = 2iz; A 25, 0ne
concludesthat ¢ = 4.

On the other hand, it is possible to express Rw, w) in terms of the standard Un-invariants,
the scalar curvature s = 2tr(R) and the x-scalar curvature s* = 2tr(JR).

Lemma4. (Ro,w)=S— s*.
Proof. Thesplitting A? = u, @ ut implies
tr(R) = tr(R, un) + tr(R, uy), tr(JR) = tr(IR, up) + tr(IR, up).
SinceJ =1lonAM =y, @ Cand J = —1on A?° @ A%2 = u} ® C, we havethat
tr(JR) = tr(RJI) = tr(R, up) — tr(R, uy).
Subtracting, we get s — s* = 2tr(R) — 2tr(JR) = 4tr(R, ub) = (Rw, ). O

3.4. The U, formula

Now denote by E; the L,-norm of the component (Vw);, sothat | IVo|?2 = E1+-- -+ E4.
Plugging into formula (1) the information gathered above, the formulafor the U,, case reduces
to

1
2E1—E2+(n—1)E4:§/s—s*. 3

Note that E3 does not appear and that E; = E3 = 0for n = 2 (i.e. real 4-manifolds).

3.5. Two homogeneous examples

3.5.1. The 6-sphere. The sphere S° with the round metric admits a homogeneous orthogonal
amost-complex structure (Go-invariant) whichis“nearly-Kahler” (Vo = dw, see[11]). Since
s = 30ands* = 6, formula(1) gives E; = 6 Vol (S°); by homogeneity, ||dw||? = 6 identically.
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3.5.2. Product of odd spheres. M1 x 1 « ¢™+1  C™1 with the product of standard
metrics admits a compatible (Um 1 x Uny1)-homogeneous complex structure due to Hopf and
Caabi-Eckmann. In fact, for n = 0 (so-called Hopf manifolds) (Vw); = 0 aswell (see[13)]).

Working with the definition of J, we get s — s* = 4(m? + n?), thus (m + N)E4 = 2(n? +
m?)Vol(M); by homogenity, ||(Vw)s]|? = 2(n? + m?)/(m + n) identically .

3.6. Applications of the U, formula

Some of the following applications appeared in [10] and [15], using similar techniques to
ours (representation theory and integral formulag), although from aless general point of view.
The literature on almost-hermitian manifoldsis quite vast so it is possible that we have missed
some other relevant references.

3.6.1. Complex structures and negative curvature.

Proposition 1. On a compact riemannian manifold of dimension > 4 with a negative-definite
curvature operator (R < 0) any orthogonal almost-complex structure satisfies E; # 0. In
particular, such a manifold cannot admit an orthogonal complex structure.

Proof. Observe that the integrand on the right hand side of formula (3) is %(s — s =
2tr(R, ut) < 0. O

In particular, thisresult holdsfor ahyperbolic manifold, sinceitscurvature operatoris—Id,, 2.
Thiswas also proved in [10] and [15].

Note that the compactness assumption is essential, because for the unit ball in C" the stan-
dard hyperbolic and complex structures are compatible. In dimension 4 it is known that the
orthogonality assumption is superfluous, i.e. acompact hyperbolic 4-manifold does not admit
acomplex structure (orthogonal or not), see [16]. For higher dimensions the problem is open.
Another question, open asfar aswe know, isthat of the existence of orthogonal almost-complex
structures on compact hyperbolic manifolds. The only result in this direction that we are aware
of isan unpublished proof of Kotschick that such examples do exist in dimension 4.

3.6.2. Conformally flat manifolds. A conformally flat manifold (i.e. locally conformal to
euclidean space) is characterized by the vanishing of its Weyl tensor (for example[1, p. 60]).

Lemmab5. On a conformally flat almost-hermitian 2n-dimensional manifold s = (2n — 1) s*.

Proof. The space of curvature-like tensors on R?" with vanishing Weyl tensor is (Oop-
equivariantly) isomorphic to the space of quadratic forms on R?" (essentially the space of
Ricci tensors). The latter has a 1-dimensional space of U,-invariants (by the Schur lemma,
since R?" = C" is an irreducible U, -representation), hence s* and s are proportional. It is
thus sufficient to verify the identity for a single curvature operator of the said type, say for
the identity operator on A%(R?") (the curvature operator of the sphere). We leave this simple
verification to thereader. [
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Conseguently, on aconformally flat al most-hermitian compact manifold formula(3) reduces

to n—1
2E1 —Ex+(n—1DEs = /S.
2n—1Jm

An immediate consequence of thisis the following result.

Proposition 2. Let M be a compact, conformally flat almost-hermitian manifold. Then

() If the structure is hermitian (i.e. J isintegrable), then [;, s > 0, with equality if and
onlyif d*w = 0;

(b) If the structureis symplectic (i.e. dw = 0) then [}, s < 0, with equality if and only if the
structure is Kahler.

Proof. The assumption of part (a) isthat E; = E, = 0, thus the inequality. Vanishing of the
total scalar curvature further impliesthat E4 = 0, and since || (Vw)a||? isamultiple of ||d*w||?
the result follows. Part (b) is proved similarly. O

Part (a) was proved in [10]. Observe that this again shows that on a compact rea hyper-
bolic manifold there can be no orthogonal complex structure, since a hyperbolic manifold is
conformally flat withs < 0.

In dimension 4 we get a stronger result, because the last lemma remains true for the larger
class of anti-self-dual manifolds. Recall that an oriented riemannian 4-manifold is said to be
anti-self-dual (ASD) if W = 0, where W = W+ @ W~ is the decomposition of the Weyl
tensor relative to the eigenspaces of the Hodge * operator. Furthermore, in dimension 4, an
hermitian manifold with d*w = Qisinfact Kahler (recall that E3 = 0in dimension 4). Hence,

Proposition 3. Let M be a compact, ASD almost-hermitian 4-manifold. Then

() If the structure is hermitian then [, s > 0, with equality if and only if the structure is
Kahler.

(b) If the structure is symplectic then [, s < 0, with equality if and only if the structure is
Kahler.

Further information on the relation between hermitian geometry and the Weyl tensor may be
found in [10] and the references therein.

3.6.3. Locally symmetric spaces. Some symmetric spaces G/K admit a G-invariant orthog-
onal complex structure (which isin fact Kahler), unique up to asign if G issimple. These are
the hermitian symmetric spaces. If G isaproduct of k simple groups then we get 2 G-invariant
orthogonal complex structureson G/ K. We show next that on compact quotients of symmetric
spaces of non-compact type (all irreducible factors are non-compact and non-euclidean) these
are the only orthogonal complex structures. A dua statement for compact type spaces also
holds.

Proposition 4. Let M be an almost-hermitian manifold of dimension > 4 which is a compact
connected quotient of a symmetric space Z = G/K with k irreducible factors. Suppose that
either

(a) the structureon M ishermitian and Z is of non-compact type;
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(b) the structureon M is symplectic and Z is of compact type.
Then Z ishermitian symmetric and the structure on M descends from one of the 2¢ G-invariant
Kéhler structureson Z.

Note that once again, thisresult impliestheimpossibility of ahyperbolic hermitian structure on
acompact manifold of dimension > 4, since (1) a hyperbolic manifold is alocally symmetric
space of non-compact type, and (2) hyperbolic space is not hermitian symmetric in dimension
> 2.

Part (a) was proved by [10] when G/K is irreducible and in [15] with the superfluous
hypothesis that the irreducible factors of G/K should be different from the real hyperbolic
plane.

For the proof given here we need, in addition to the Bochner formula (3), the following basic
algebraic facts from the theory of symmetric spaces. We use the following standard notation:
G/K is asymmetric space, g and ¢ the Lie algebras of G and K (resp.) and p = £+ (with
respect to the Killing form of g).

Lemma6. Suppose J € End(p) isan orthogonal complex structure such that itsi-eigenspace
p2% c p ® C is an abelian subalgebra of g ® C. Then J is K-invariant, hence G/K is a
hermitian symmetric space and J coincides with the value at Tjx;G/K = p of one of the
G-invariant orthogonal complex structureson G/K.

Thisisessentialy [6, lemma4.8].

Lemma 7. Let R be the curvature operator of a symmetric space G/K of compact or non-
compact type. Thenfor any X, Y, X', Y’ € p = Tx1G/K,

(ROXAY), X' AY")Y = —([X, Y], [ X, Y]) in the non-compact type case;

(RIXAY), X' AY") = ([X, Y], [ X, Y]) in the compact type case.

Thisfollows from [14, theorem 4.2, p. 215].

Proof of Proposition 4. Fix apoint x € M and identify TyM = p. Next pick a unitary basis
{z}for TLOM = p1-9 and use Lemma 7 above to calculate the integrand on the right hand side
of formula (3) at x:

J(s—s) =2tr(R.uy) =2 (R(z A Z).z AZ) =+2) [z ]I,
i<j i<j
with the sign “—" in case (a) (non-compact type) and “+” in case (b) (compact type). In either
case, we get different signs on the two sides of formula (3) and conclude that p*-© isan abelian
subalgebra of g ® C. Lemma 6 above then impliesthat Z = G/K is hermitian and the value
of J at x comes from one of the 2X G-invariant complex structures on G/K . By continuity, J
corresponds to one of the G-invariant complex structureson Z. [0

We single out two immediate consequences of the last proposition:
— Compact type: Proposition 4 determines all symplectic structures on CP" (or products
of them), compatible with the standard (Fubini-Study) metric.
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— Non-compact type: products of compact hyperbolic manifolds of odd dimension do
not admit an orthogonal complex structure (i.e. there is no negatively curved version of the
Hopf-Cal abi-Eckmann hermitian manifolds).

4.SU,, n> 3.
4.1. Definition of an SU,-structure

ThegroupSUy, n > 2, isthestabilizerinU, of thecomplexvolumeformy = z1A...AZ, €
AMO(VH), V = C" = R?. Its (complexified) Lie algebraisthe “ primitive” part of AL, i.e.
the subspace orthogonal to w. In fact,

Lemma8. For n > 3, SU, isthe stabilizer of » in O,,.

Proof. This must have appeared somewhere, but at any rate here is a sketch of a proof: first,
check theclaimontheLiealgebralevel,i.e.a-yy = 0 = « € su, (divideinto cases, according
to the (p, q)-type of ). Next, g*y = v — (Q*w) - ¥ = w - ¥ hence g*w — w € su,. On
the other hand, since sup = Ker(-y), g*¢y = ¥ = g*su, = sup = g*sut = sut. Since
o € sul, weget g*w — w € suy, henceg*w = w, 09 € Uy. O

Furthermore, it iseasy to seethat SU,, isthe stabilizer of any non-zeroelementin A™9@ A%";
it turns out to be useful, for what follows, to choose thisto be areal element, n = ¥ + .

4.2. Decomposition of Vi

Under SU,, the Lie algebra of U, (red part of A1) decomposes asu,, = su, ® Rw, hence
sul = Ro @ u (two SUp-irreducible summands, distinct for n > 3). It follows that

W=A'®G6up- ) =A'® (@ n) & A*® (g - n).
Now Wy := Al ® (w - n) = Alisirreducible, where
w-n=a)-(1/f+lz)=—in(w—;”)=n77L, HL3=(¢—$)/L

As for the decomposition of A ® (ui - n) into irreducibles, we use the U,-decomposition of
Al ®ulinto4irreducibles W, . . ., Wy, and give their corresponding images the same names
here (irreducible Uy, representations remain irreducible upon restrictionto SU,). Wethusobtain
the decomposition

W=A1®(5u#-n)=WoEB~-®W4-

Remark. Note that we have two isomorphic summands; Wy = W, = Al Thus, at(Vn)o
and alt(Vn)4 need not be orthogonal (indeed they are not, in general), which complicates the
expression for the left-hand side of formula (1) (appearance of “mixed terms”).
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4.3. The left-hand side of formula (1)

First, notethat xn = +n, hence ||dn|| = ||d*n||. Thus,

4
Idnl® = Id*nll? = [lint(Vm I =Y [int(V) ;1> + 2(int(Vn)o. int(Vn)4)
j=0

4
= Y &l (Vn)ill® + 2(int(Vn)o, INt(V)4),
i=0
with & the homothety factor of int (or alt) in W;. The next table summarizes the cal cul ation of
the g . Asashorthand notation, we use z;5 for z; A Z,, €tc.

Summand | wj e W @ C il [lint(w)]|? aj
Wo 1@ 2/n! 1 Zn!
Wi 21Q(Z3 N +22Q(Za-n)+2Z3® 6/n! 12 2.n!
(z12- 1)
W, 21 Q (Z12- 1) 2/n! 1 Zn!
Ws 210 (23 1) - 0 0
W, S, Z ® (Zgi - 1) 2n—1/nt| (n—17? | (n—1)-in!

Table 3. Calculation of the homothety factors a; for SUp, n > 3

Clearly, an SU,-structure induces an U, -structure with its Kahler form w, thus one expects
to express Vw interms of V. Thisis donein the next lemma.

Lemma9. For any SU,-structure with Kahler form o and volume-forms  and n* as above,

we have the orthogonal decomposition Vip = (Vi) + - - - + (Vn)a, With

@ (Vo =—0 @ n*, whered = —3(Vn, n*) = (Vy, ¥)/i.

(b) (Vo) = —3(Vow) -0t e W, i =1,...,4, where -t : A'® A2 > AT ® AMisgiven
byo @a o ® (a-nbh).

© I(Ymill? = II(Ve)iI?/nt, i=1,....4

(d) (int(Vio, int(Vina) = 5(6, d*w).

Remark. The 1-form i6 = (V, ¥) has the interpretation of the connection form of the
canonical bundle A™°, relative to its section .

Proof. (a) Thisisthe usual projection formulaon n* (note that ||]|* = 2).

(b) Notefirstthat by our definitionof n = ¥+, (V)i +...+ (Vs = (V)" 1 4conj.,
where (Vy)"~11 is the component of Vi in A* ® A", Now start from o - ¥ = —iny
(using equation 2) and apply V to get (Vo) - ¥ +w - (Vi) = —in(Vy). By taking the (p, q)-
decomposition of the last equation and applying again egquation 2 to the (p, q)-components of
Vi, weget (Vo) - = —2i (Vi)' 11, Subtracting from the last equation its conjugate, we
get (Vo) - nt = —2[(Vy)"11 4 conj.], asclaimed.

() Themap -nt : ur — A" isahomothety onto itsimage (by Schur’'s lemma, since the
domainisirreducible) and the homothety factor can be calculated by checking the effect on a
single element (calculation omitted).
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(d) We need to make use of the identity
int(w - ) = —intfint(w) ® n*], weW; C At® A% (%)

Proof of (d): by the Oy -equivariance of int : A'® A" — A" o -int(oc ® nt) = int[(« -
o) @ nt]+intfo @ (a - nt)], foral o € AL, o € A% Now we claim that the map defined
on A ® A2 by the left-hand side of the last equation vanishes when restricted to Wy; by U,,-
equivariance, itisenoughto check thisonasingleelementin W, ® C, say =),z ® zg3. Indeed,
X0 L7 - int(z ® nt) = 0, sinceint(z ® nt) € A%t and A%2 acts trivialy on forms of
type (0, p). Now usethefact that o - ¢ = int(c ® ), foro ® « € AT ® A? and the identity
(%) follows.

Now using int[ (Vw)4] = —d*w (see the U, section) and item (b) (for i = 4), we conclude
that int[ (Vn)4] = —%int(d*a) ® n*). Combined with item (), we have

(int(Vo, int(Vi)a) = 3 (int(@ @ n7), int(d*w ® ).

Now themap A — A", o = int(c ® nt) is SU,—equivariant with an irreducible domain,
hence a homothety onto its image, so it is enough to check its effect on a single element, say
z1, giving [lint(z1 ® nH)|| = [iMt(Z1 @ ¥)| = |1Z2 A ... A Zqo|l = 1, i.e. we have an isometry,
and so (int(0@ ® nb), int(d*w ® 1)) = (A, d*w), asrequired. [

Lemma 10.
. . 1
f (int(Vn)o, int(Vn)a) = - / (K, ),

where ik = d(V, ¥) is the curvature 2-form of the connection induced by the Levi-Civita
connection on A™O,

Proof. Integration by parts of item (d) of the previouslemma, O

4.4. Theright hand side of formula (1) (the curvature term)

Lemmall. (Ry,n) = 3(s+s").
Proof. According to Lemma 3 of the introduction,

(Rn, n) = 1 tr(R, Rw) + Cotr(R, ub),

with ¢; = o - n]1?/|lw|? and ¢, = |« - n||? for a unitary o € A%C. We compute the terms
appearing in thisformula

ci:wehavew - n = —in(y —¥), 0 |w-nll?=2n? ||w|?=n, hencec, = 2n.

Cfora=z1A2, |le|?=1landa-n=a- Y= (- A)AZ3A...ANZn = (Z1AZ1+ 22 A
Z)AZZA ... ANZn, S0 |lo-n||?> =2hencec, = 2.

tr(R, ub): in the Uy, section we found tr(R, u}) = Z(s — s*).
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tr(R, Rw): using the Bianchi identity,

(Ro,0) = Y (RZjg. ) + Y (RZji %j)
j.k

TK
= D (RIZjk. ZiR) + D) _(RIZj, Zj) =
ik ik

= (R, AM) +2tr(RJ, A%®) = tr(RI) = 1%,

hencetr(R, Rw) = (Rw, w)/|lw||? = s*/2n.
Combining al the above we get the desired result. [

4.5. The SU, formula

Putting together all the information gathered so far in this section we arrive at

1

3E1—E3+(n—2)E4+2/(K,w):—/s+s*. 4
M 2 M

whereE; = fM |(Vw); |2 andi « isthe curvatureof the L evi-Civitaconnection on the canonical

bundle.

4.6. Extension to U,-structures

Observe that formula (4), as it now appears, makes sense for any Up-structure, and that the
only information eventually used about the SU,-structure is that it exists, i.e. that we have a
Up-structure for which ¢; = 0 (the canonical bundle A™° is topologically trivial). It is thus
tempting to guess that the formula holds for any U,-structure. Indeed,

Proposition 5. Formula (4) holds for any U,-structure, n > 3.

Thisfollows from the twisted version of formula (1) for the case of an n-form ¢ with values
inthevector bundle E = real part of A™°@® A%", equipped with the connection induced by the
Levi-Civitaconnection (by projection). Wetake ¢ = n ® n + n+ ® n* (basically theinclusion
map of E in A™), then this section is defined globally, although 7 is defined only locally, and
one checks easily that formula (1) applied to ¢ yields formula (4). Details of this calculation
areroutine and are |eft to the reader.

4.7. The U, examplesrevisited

The S° example. Sinceit is of type W, the (V 1), term vanishes hence also the crossed term.
Sinces = 30, s* = 6, the equation is 3E; = (3)36Vol(S?) so E; = 6Vol(S°), consistent
with the calcul ation with the U,, formula.
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The ™1 x St example. We have already remarked that S?™1 x St admits a Up-structure
of type Wy, from which we deduced that

1
m/ ||Vw||2=—/ s —s* = 2m?vol(M).
M 2 M

For this example the formula derived in this section reads

(m—l)/ ||Va)||2:}f s+s*—2/(/<,a)).
M 2 M M

From which we deduce that,

[Voll? = 2m = (k, ).

4.8. Applications

For easy reference, let us collect both formulas (3) and (4), taking their sum and difference:

Proposition 6. Let M be a compact almost-hermitian manifold of (real) dimension 2n, n > 3.
Then,

5E;1 — E, — E3+(2n—3)E4=/ [S—Z(K,a))]
M

Bt Ep— Es— E4=/ [s* — 20, )],
M

where E; = fM [(Vw); |12 and i « isthe curvature of the canonical bundle.

One can use these formulas to characterize, via curvature conditions, different types of U,-
structures. For example,

Corollary 1. Let M be a compact hermitian manifold of (real) dimension > 6. Then

/nw)nzzf 2, ) — &
M M

in particular, such a manifold is Kahler if and only if [s* = 2 [ (x, ).

Corollary 2. Let M be an almost-hermitian compact manifold of (real) dimension > 6, with
d*w = 0and c; = 0. Then

5E1_E2_E3:/S, and E1+E2—E3:/S*.
M M

In particular,
— ([12]) if M isnearly—Kahler and ¢; = 0, then |}, [Vol®> = £ [, S = [}, S*
— ([18]) if M is almost-Kahler (i.e., symplectic) and ¢; = O, then [}, |[Vo|? = — [}, s =
Jus"
— ([18]) if M ishermitian, d*w = 0 and ¢; = O, then |, IVo|? = — fus=—/[us"
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Proof. ¢c; = O implies that « is exact, hence, since d*w = O, integration by parts gives
Sk, @) = 0. Since ||(Vw)s| is proportional to [|d*w]|, the result follows from the above
proposition. [

5.Gy
5.1. Definition of a G,-structure

Let V = R’ with its standard euclidean structure, an orthonormal basis {ey, . .., e;} and
dual basis {61, ..., 67}. Denote by AX := AX(V*) and basis elements by 6; = 6 A 6],
Bijk = 6 NOj Ab, ... etc. Thegroup G, C Oy isthe stabilizer of the 3-form

¢ = 0124 + 0235 + 0346 + 0457 + 0561 + O672 + O713.

(In fact, according to [2], G, is the stabilizer of ¢ in GL7). A good way to remember this
formulaisto note that the 7 terms are obtained by cyclic permutations (mod 7) of the first term
6124.

5.2. Decomposition of V¢

In the following decompositions the subscripts on irreducible G,-representations denote
their dimensions, omitting the detailed description of someirreducible spaceswhen their nature
(other than their dimension) isimmaterial for us. Fortunately, the G, irreducibl e representations
that we meet here are distinguished by their dimensions alone. The following lemmais taken
amost verbatim from [2] (see also [8] where the decomposition was first obtained).

Lemma 12. Under G,, we have the following decompositions into irreducible subspaces.

A% = A%, & A%, corresponding to so7 = g2 @ gy, Where AZ, = go is the kernel of

(14
9 A — 3, a>a-¢, and A% =gy = Alistheimageof 6 — int(6 @ ¢), 6 € A™.
A% =AY @AY ® AYy), where AP} = R¢ and AP, = Alistheimage of 6 — int[6 ®
(x@)], 6 € AL,

Next, we decompose
1 3 ~ a1 1 2 2 2 2 2 2

where we use the decomposition of S? (quadratic forms on V) into {multiples of the inner-
product} & {traceless).

Itiseasy to seethat Sfl) consistsof multiplesof theinvariant 4-form x¢, usingthefollowing
argument: since A3 contains asingleisomorphic copy of A%, it follows (using Schur’'slemma)
that the subspace of fixed vectors in A* ® A2 is 1-dimensional. On the other hand, A* C
Al ® A3, hence the fixed subspace in A* @ A%, and hence in A! ® A(37), must consist
precisely of the multiples of x¢.
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If we name the irreducibl e subspaces of W by their dimension, then we have

W=A'® (g3 - ¢) = W1 & Wy © Wig © Wyr.

5.3. Theleft-hand side of formula (1)

Denote by Vo = (Vo)1 + (Vo) + (Vd)1a + (V)27 the decomposition of V¢, where
(Vo) € Wi. The W, are mutually distinct G,-representations, hence, according to Lemma 2
of the Introduction, there are constants g; such that

Ide? = 1at(Ve) |1 = Y 1at(Ve) I = ) _all (Vo)
| |
where g is the homothety factor of alt : W, — A%, i.e |at(w)|? = a|wi|? for every
wi € W,. Similarly,
Id* 112 =D llint(Ve)i |1 = Y bill (Ve
| |
where the b; are the homothety factors of int : W, — AZ2.

The next table summarizes the result of the computation of the homothety factorsa; and b;.
Weusethemap T : A'@ At > A'® AY,), 0 ©6' = 6 @int[6’ ® (x¢)].

Summand | element wi e W | JlwilI* | llalt(wil? | llint(wi)ll® | & | by
Wy * 7/24 7 0 2410
W, T[int(61 ® ¢)] 4 36 48 9|12
Wi T (612 + O35) 8/3 0 8 0|3
Wo7 TOL1R601—6,R6)| 4/3 4 0 3|0

Table 4: Calculation of the homothety factors g;, b for G2
We thus have

11> = 241 (V)12 + 9l (VP)711? + 3 (V) 7|7,
Id*¢ 12 = 12[[(V$) 71l + 3l (V) 14ll%.

Remark. It follows from these formulas that ¢ is parallel (V¢ = 0) if it is harmonic (d¢ =
d*¢ = 0).

5.4. The right-hand side of formula (1) (the curvature term)

The curvature term turns out to be particularly ssmple in the G, case.

Lemma13. Let M bea 7-dimensional manifold vvlth a Go-structure, a 3-form¢, a Riemann
curvaturetensor R and scalar curvature s. Then (R, ¢) = 2s.

Proof. Let us prove first that the space of G,-fixed curvature-type tensors is 1-dimensional:
since A? decomposesinto two non-isomorphic irreducible subspaces, the Schur lemmaimplies
that the space of G,-fixed elements in S?(A?) is 2-dimensional. Now the G,-fixed subspace
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of A%is1-dimensional (multiples of x¢), hence the G,-fixed subspace of its orthogonal com-
plement in S?(A?) (this is exactly the space of curvature-type tensors) is also 1-dimensional,
as required. It is therefore enough to verify the identity on a particular curvature-type tensor
(for which the outcome is non-zero), say R = 61> ® 610. This (simple) verification isleft to the
reader. O

5.5. The G, formula

Denoteby Ei, ..., Exz the Ly normsof (Ve)a, ..., (V)7 (resp.), then substituting all of
the above into formula (1), we get

2
6E;1 +5E7 — Eqs — Exy = ._;; / S. (5)

Corollary 3. Let M be a compact, calibrated (i.e. d¢p = 0) Go-manifold, then ['s < 0 with
equality if and only if the local holonomy of M is contained in G..

5.6. Examples

Hypersurfacesin R8. Consider R® with its standard Spin,-structure ® e A%((R8)*) (see next
section). Then on any oriented hypersurface M’ C R® there is a G,-structure defined by
¢ = inty®, where N is the unit norma on M given by the orientation. For example if M
is a linear subspace (say xo = 0) then we get the standard ¢ on R’. If M is the unit sphere
S’ ¢ R® we get the homogeneous space Spin,/ G, withits (essentially unique) Spin,-invariant
Go-structure.

For any hypersurface in R® the above defined G,-structure is of type Wy & Wa7, see[8], and
therefore the formula for them reduces to

2
6E; —Exy =] s
1 27 3/11/|

An Aloff-Wallach space. Such a space is a homogeneous space of the form SU3/U; equipped
with a left invariant metric. In [5] it is shown that, for a certain choice of subgroup U,, the
7-manifold SU3/U; admits (anon-parallel) SUs-invariant G,-structure of type Way. For it, our
formulaimmediately impliesthat |V¢||? = —%s; in particular, this G,-structure is associated
to aleft-invariant metric on SUsz with s < 0.
Integrable G,-structures. In[9] G,-structuresof type Wy & W, ® W, are studied; it isdiscussed
therewhy these structures should be considered the G, analogues of integrablea most hermitian
structures. A few examples are given.
Nearly-parallel Go-structures. In a recent work of N. Hitchin (see math.DG/0107101 in
http://xxx.lanl.gov), Gs-structures of type W; (called also nearly-parallel G, manifolds, or
manifolds with weak-holonomy G,) appear in relation with various natural variational prob-
lems. For such manifolds our formula (5) above gives (s =9 [ ||[V#]||? > 0.

Further examples and properties may be found in [8].
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6. Spin,
6.1. Definition of a Spin,-structure.

Let V = R8 with the standard euclidean structure, an orthonormal basis e, ey, . .., €7,
and dual basis 6o, ..., 67. Denote by AX := AK(V*) and basis elements by 6;j = 6 A 6},
Oijk =6 ANOj AO, ...€lC

The group Spin;, C SOg is the stabilizer of the 4-form ® = 6y A ¢ + x¢. Here we are
thinking of R® = R @ R, with ¢ and ¢ on R’ (pulled-back to R®) as defined before for G..

6.2. Decomposition of V&

Like in the G, case, we denote representations by their dimensions and omit further infor-
mation whenever is not used here. We have

Lemma 14. We have the following Spin, decompositions:
— A% = A%,y ® A%, corresponding to sog = spin, & sping, where A% = spin; isthe
kernelof DA% A o> - D
— A3 = A% @ A, Where A isthekernel of @A A% — A% o> @ A
— A= A ® Al @ Ay @ Alss), Wwhere AY, istheimageof @ : A% — A%, a > o @.

For theproof, seee.g. [2]. It followsfromthislemmathat W := Al®(spiny-®) = Al@A%
so we decompose

(UK

W= At ® Ay = We & Wag,
correspondi ng to the kernel and co-kernel (image of the adjoint) of the interior product map
int: A'® A% — AL

6.3. The left-hand side of formula (1)

The 4-form ® is self-dual. It follows, like in the case of SU,,, that ||d®| = ||d*®||, so that
[d® |12 = [|[d*®|12 = [[int(VD)||? = ag||(VD)g|I? + aus (VD) sll?,

for some homothety factors ag, ays.

Summand | w; € W, | lwill? | flint(wi? | &
Ws [ Y716 ® (6o - @) I | 16-7 |48
Wig o ® [(012 + O36) - P] + 01 ® [020 - D]+ 3 8 6

62 ® [fo1 - @] + 63 ® [fe0 - ] + 06 ® [6o3 - D]
Table 5: Calculation of the homothety factors g for Spin;,

Details of the calculation: To pick a wg € Ws, we define an isomorphism A — Ws by
considering the composition

At > At A? = Ao AY
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where the first map isint* (the adjoint of interior product) and the second is given by the map
A% = A% a — a-®. Startingwith 6y, we havethat int*(6p) is, up to aconstant, Z?Zl 6 ®60i,
and so we get (after some moderate calcul ation)

7 7
wg=Y 6 ® o ®) =) 60 A¢—0AING @ (x4))],
i=1 i=1
7
int(ws) = ) intl6 ® (6 A § — o AINt(G ® (x¢)))]
i=1

7
= Z intl6; ® (6 A @)] = 4¢.
i=1

To pick awgsg € Wig we define an isomorphism A(348) — Wyg viathe composition
Ay —> A° > AT® A*—> AT AT

wherethefirst mapisinclusion, thesecondisalt* (theadjoint of alternation, or exterior product),
and the third is given as before by the A2-action on &.

To pick an element in A(348) ={a|® Aa = 0}, wetry an o of the form o = 6y A g,
ap € A’(R7). Then ® A« = 0if and only if x¢ A g = 0. Thelast equation, by a Schur lemma
typeargument, isequivalenttoag € Afu), i.e.agisinthestabilizer of ¢ (or x¢), fromwhichone
obtains easily by inspection asolution such as g = 612 + 636, SO that & = 12 + Oozs € A(348).
Now

at* (o) =00 ® (012 + 035) + 01 ® 29 + 02 ® Op1 + 03 ® O6g + 5  Opz,

and
Ogi - ® =6 Ap — G AINt[6 ® (x0)],
S0 that
wag =02 ® [91 AN¢ — 0y A int(@l X (*¢))] -0 ® [62 AN@ — 0 A int(6, ® (*¢))]
+06®[03 NP — O ANiNt(63 ® (x¢))] — O3 ® [0 A ¢ — 6o A INt(B @ (x¢))],

(note that the g ® o term in at*(a) mapsto 0, since g - ¢ = 0).

Thusint(wsg) = - - - = —2a, where". - .” denotesamoderately tedious, yet straightforward,
calculation.

We thus have,

Id®|? = [|d*®||* = 48] (VD)g1* + 6]l (VD) 4g|”.
Remark. It followsfrom thisformulathat ® isparalel if it is closed.
6.4. Theright-hand side of formula (1) (the curvature term)

The proof of the following lemmais very similar to the G,-case and is | eft to the reader:
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Lemma 15. Let M be an 8-dimensional manifold with a Spin,-structure, a 4-form @, a

~

Riemann curvature tensor R and scalar curvature s. Then (R®, ®) = 2s.

6.5. The Spin, formula

Denote by Eg, E4g the L, normsof (V®)g, (V®)ag (resp.). Then the above information into
formula (1) gives

6.6.

1
6E8—E48=6/5

Examples

S’ x S In[4] itisshown that S’ x S' admits an Spin,-structure of type Ws.
The reader may find there a few more examples.
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